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We c~mstder a model of thermal processes ;~ treatme~t by local h37wrthermta. The model ts based o;; t&" 

classical  non l inear  bzothermal equatton. H:"e f o r m u l a t e d  a l~r~?hlcm ~f opttrntzat;on con.ststtng of  

rnax;mtzatum of the mortahty function of tumor cells and f~ndtng a control for which the tcml?erature 

dtstr;bution ;n the tumor maxzmtzc.s the therat?euttc effect, while the ;~uury functton uf health)' ttssuc ts small. 

1. Introduction. The main aim of treatment by local hyperthcrmia is to heat the tumor tissue to specific 

temperatures over its entire volume, provided that the heating of and thermal damage to the tissue remain small. 

Certain problems associated with simulation of thermal processes in hyperthermia have been considered, for 

example, in 11-3 I. In [4 ], a proccdurc of optimization is suggested for a phase hyperthermal system. In this work 

the stationary classical biothermal equation is considered in a semi-infinite uniform region and, using Green's 

function, a solution of the problem for a four-clement system is obtaincd. 

For the vector q = (PI, P2, P3, P4, ~~ ~3, and 94) the amplitude t'i and phase ~'i components of the 

i-th element are considered as controls. The optimization problem consists in finding a vector 

= (PI, P2, P3, P4 ,~1,~2,~3,  ~4)' 

for tumor tissue that minimizes the quadratic functional 

f f f fry C~) - 7"0) 2 ,.,'x 1.l) 

for healthy tissue with the constraints 

rq (x) -< T 1 . 1.2) 

Actually, however, treatment by hyperthermia is not a stationary process. The damage and destrucnon of 

living tissue depend not only on the magnitude of the temperature but also on the duration of its action. Therefore, 

if the time of the action of a high temperature is rather small, the tissue is hardly damaged. Conversely, even a 

moderately high but long-tasting temperature can lead to the damage and destruction of healthy tissue. 

In this connection, below we consider a nonstationary problem for the nonlinear biothermal equation. We 

introduce a damage function that is determined at each point of the tissue with allowance for the temperature 

history. This function is normalized so that it is equal to zero for healthy tissue and to unity for damaged tissue. 

The optimization problem involves maximization of the mortality function of the tumor cells. In this case 

the value of the destruction function in healthy tissue must be small. 
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2. Direct  Prob lem.  Let ~ C R", n = 2, 3 be a region filled with tissue, with tumor occupying the region 

Qt C Q and a healthy tissue the region Q \QI (Fig. 1). We denote the boundaries of the Q and ~I  regions by S 
and F and assume that  the la t te r  quanti t ies  are continuous according to Lipschits. Let Si C S be the bounda ry  

between the t issue and the environment  and $2 = S\SI the boundary  between the region cons idered  and the t issue 

located outs ide  this region. 

The  t empera tu re  field T in the heal thy tissue is descr ibed by the classical biothermal  equation [5, 6 ] 

aT-[= ~ k~x~ ) -W(T-Ta)+ Q in n x (O,N) .  
t = l  

The r igh t -hand  side of Eq. (2.1) de termines  the amount  of heat passing through the tissue. The  second 

term of Eq. (2.1) represents  heat  t ransfer  due to blood circulation. We will consider  boundarv  condi t ions of the 

following form: 

T =  T I over 5' 2 • (0, N ) ,  (2.2) 

,3 T 
k ;Tff=/3(T 2 -  7") over S I ., (0, N) .  

We assume that the following initial tempera ture  dis t r ibut ion is given: 

T{x,  0) = T 0 ( x ) ,  x e~ Q .  

In par t icular ,  it can be assumed that To = Ti = Ta = C:. 

Let us assume that 

T a = const , 

(2.3) 

(2.4) 

(2.5) 

{a, k} C Loo ( ~ ) ,  (2.6) 

a ( x ) - >  b I ,  k (x )_>  b 2 almost everywhere in Q ,  (2.7) 

,6 E L~ (Sl)  , ,8 (s) >- b 3 almost everywhere over $1 , (2.8) 

b i = c o n s t  > 0  ( l =  1 , 3 ) .  (2.9) 

Here and below we use cornvent ional  notat ion for the functional spaces 17, 8 I. Let I.V = W(.,:, T) and  the following 

condit ions be sat isf ied:  

I, V E  L:~ (Q, ('~ (R) ) ,  {2.10) 

v ( x , a )  E Q  • R ,  0_< W ( x , a ) _ <  b 4, (2.11) 

{914/ (2.12) 
q ( x , a )  e Ca x R ,  7 d - ( x , a )  >- O, 

where  b4 = const > 0. If (x, t) + ,p(x, t) is a function def ined in Gl ,  then we assume that cp(t) = < x  + ~o(x, 1)> and 

cons ider  ~o a function (or d is t r ibut ion)  of t, taking values in the space of functions {or d is t r ibut ions)  of x. 

Let ;~ be a cont inuat ion of T 1 in G~ and sat isfy the condit ions 
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"~ e & ((0, 73 ; H t (c~)), 

OT , H l * 
O-T C L 2 ((0, T ) "  ( C 2 ) ) ,  

(2.13) 

(2.14) 

T IG 2 = T I . 

In par t icular ,  if Ti (s, t} = C = const  on G2, then we can let 

(x, t) = c: v {x, t) ~ G I , 

We as sume  that 

{2 G L2 {{0, N } '  X ) ,  

(2.15) 

(2.16} 

T o E L 2 ( D ) ,  (2.17) 

T 2 C L 2 {(0, N) ; H -1 ~ (SI))  . {2.18) 

Specifically,  we can a s sume  thal V .'c ~ ,Q; Too,-) = C. The  funct ion T = I" + T a + ~' will be called a genera l ized  
~ x  

solul ion of problem (2.1)-{2.4) if T is a solut ion for the following p r o b l e m  
A 

T E L  2( (0 ,  T ) ; X )  A L~ ((0, T )  g 2 ( D ) ) ,  (2.19) 

OT �9 (2.20) 
0 T e & ( { 0 ,  T ) ; X  ) ,  

a , ~ - ( t ) , h  + (L i0  V (t), h) = (O (t), h) - ~ ~ ( t ) , h  - 

f k o.,~,~ {r} - -  dx  - f / S  {~  (r) + T~, - T.,) h ds v h E X 
". O.V. 1 - , , ~2 i = I .S" l 

(2.21} 

p .  

T ( 0 )  = T 0 - TC0) - T a .  {2.22) 

Wc can show thal  u n d e r  condi t ion  (2.5)-{2.15) the opera tor  is str ict ly monotonic .  Us ing  the resul ts  of [6, 

7 ], we will prove the following theorem.  

T h e o r e m  2.1. i ~ t  condi tu}ns  ( 2 . 5 ) - ( 2 . 1 5 )  and ( 2 . 1 6 ) - ( 2 . 1 8 )  be satisfied. Then,  there exLsts a unique 

solution of  problem (2 .19 ) - (2 .22 ) ,  where the fl~rlction (Q; T2) ~ T, which de termines  the solution,  is a contzrlUOUS 

trans form of  

G = L 2 {(0, N ) ; X * )  • L 2 ((0, N)"  H - l ' 2 ( S j ) )  

to 

H 1 Ou I v = . I . ~ c2 ((0, T) ; (~ ) )  ; ~ -  E L 2 ( ( 0 ,  T )  " ( H  I ( Q ) ) * )  . 

3. Problem of Optimization. Let us consider the function of the heat source power Q and the cooling-medium 

temperature T2 as controls. The set of controls will be determined in the form 
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U = {ql q = (Q, T2) {E G}.  

From Theorem 2.1 it follows that for each q {E U there exists a unique general ized solution Tq Of problem 

(2 .1)- (2 .4) ,  where  the function q --, Tq is a continuous t ransform of U to V. For each q E U we de t e rmine  the 

damage  function of the t issue at the point x E f~ 

N 
{I3 (q, x) = f g (Tq (x, t), x) Tq (x, l) dr. 

0 

Here g is the influence function,  which depends  on tempera ture  T and x {E D. In our case g(Tq(x, t), x)Tq(x, I) is 

the degree  of t issue damage  at a point (x, t) E G1. The function g is de te rmined  from an exper iment  and  is equal 

to zero for T < C;, while for T > C it increases with an increase in T, C = const > 0. For undamaged  living tissue, 

{l)(q, x) = 0 and the function g is normal ized so that the equali ty tl}(q, x) = 0 indicates the tissue damage  in the 

vicinity of point x. We cons ider  that: 

g e { ' { R  x ~ ) ,  (3.1) 

b 5 >_g{ez, x) > 0 ,  v ( a , x } E R  x ~2, (3,2) 

b 5 = const > 0 .  

We assume that  the region of the tumor  f21 is divided into n I small open areas  {o i such that 

r/1 

a) i N t o j = Q  ( i , j =  1, n 1 i~ . /7) ,  U w i =  ~1 
i=1 

For  the function q {E U we de te rmine  the extent  of damage  in wi 

N 
{I:} i (q )  = (mes~oi ) - I  x f f g(Tq(x,t) ,x)  Tq(x, t )dxdt  

a} i 0 

and the objective functional  

n 1 

% (q) = y, (r (q) - 1) 2 
i = 1  

{3.3) 

(3.4) 

(3.5) 

(3.6) 

It is obvious that minimizat ion  of functional  {b 0 is equivalent to maximizat ion of tumor damage.  Similar ly,  we divide 

the region of hea l thy  t issue Q\V21 into n2 small open areas  15i such that 

-1 
tP i (q) = (rues 15 i) 

15in151=Q ( i , j =  1,he; t ~ / ) ,  

(3.7) 

T h e  d a m a g e  e x t e n t  in  15i is: 

n 2 

t = l  

N 

• f f g (Tq (x, t), x) Tq (X, t) dx dt .  
Zi 0 

(3.8) 

Let us de t e rmine  the set of admiss ib le  controls  
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II Q 11 LZ(Cl) + II II < c, Ol L2(GI ) -- ' 

(q) <- l i , i = I, n 2 , c i = const > 0 ,  

U~6 = {ql q - (Q, T2) E5 U , 

OT 2 
11 T2 l[ L2(G2) + ]l ~ II L2(G ) e2, 

i =  1 , 2 ;  l i = c o n s t  > 0 ,  i =  l, n2}. (3.9) 

The constants l i a r e  constraints on the damage of healthy tissue, l i < 1. The problem of optimization consists in 

finding q0 such that 

q0E t..Ja6, tP 0 (%)  = inf tP 0(q) .  (3.10) 
qE Ua3 

Theorem 3.1. Let us assume that the conditions of  Theorem 2.1 and Eqs. (3 .3 ) - (3 .5 )  are valid, l_z,t qJ0 be 

an objective funct ional  and Uad be a nonempty  set defined by relattons (3 .4)- (3 .9) .  Then a solution of  problem 

(3 .10)  exists. 

Proof. Applying Theorem 2, we verify that q~ are continuous on t..). Next, using general theorems on 

compactness [8 ], we prove that Clad is compact in I_J. Theorem 3.1 follows from the Weierstrass theorem. 

This work was carried out with the financial support of the Fund for Fundamental Research of the Republic 

of Belarus (grant No. B3-222). 

N O T A T I O N  

Tq, solution of the biothermal equation for the vector q; T 0, temperature required for therapeutic effect 

(43~ T 1, maximum temperature allowable for healthy tissue (41~C); t, time; x = (xl, x2 . . . . .  xn), poinl of the 

region f2; a = alp, where az is the specific heat, p is the density; k, specific thermal conductivity; w, value of blood 

p e r f u s i o n ;  Ta ,  temperature of arterial blood; Q, power of a heat source of any physical nature providing tissue 

heating; N, duration of treatment; dT/dv ,  derivative in the direction of the unit normal v to Sl; T2, temperature 

of the cooling medium; ,8, heat transfer coefficient; C, normal (physiological) temperature of healthy tissue; Y, 

Y" a r e  the  B a n a c h  s p a c e  and  a space  c o n j u g a t e  wi th  it; G1 = f2• AT), G2 = S2x(0,  N), 

X =  {ul u E H l ( f ~ ) , u l s l = O } ;  L =  {L(t), t • I0, NI} is a set of operators mapping the space X i n t o  X ~ in the 
following manner: 

/ 

(L (t)(u),  h) = J" ] ~ ~ 0~_~ 0_6_h 
s ~ i=l Oxi Oxi 

+ W ( . , u  + T ( t )  + Ta) (u + T(t)  h dx + f f l u h d s ,  
SI 

u, h} C X.  
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