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STATEMENT OF THE PROBLEM OF OPTIMIZATION
AND CONTROL OF TISSUE TEMPERATURE
DISTRIBUTION IN LOCAL HYPERTHERMIA OF
MALIGNANT TUMORS

V. G. Litvinov, A. D. Panteleev, UDC §517.946:612.57
V. L. Sigal, Z. P. Shu’man, and
T. E. Shumakova

We consider a model of thermal processes i treatment by local hyperthermia. The model 15 based on the
classical nonlinear biothermal equation. We formulated a problem of optimization consisting of
maximization of the mortality function of tumor cells and finding a control for which the temperature

distribution in the tumor maximizeys the therapeutic effect, while the injury function of healthy tissue s small,

1. Introduction. The main aim of treatment by local hyperthermia is to heat the tumor tissue to specific
temperatures over its entire volume, provided that the heating of and thermal damage to the tissue remain small.
Certain problems associated with simulation of thermal processes in hyperthermia have been considered, for
example, in [1-3]. In [4], a procedure of optimization is suggested for a phasc hyperthermal system. [n this work
the stationary classical biothermal cquation is considered in a semi-infinitc uniform region and, using Green's
function, a solution of the problem for a four-clement system is obtained.

For the vector q = (P, P2, P3, P4, p1, ¢2, ¢3, and ¢4) the amplitude P, and phase ¢; components of the
i-th element are considered as controls. The optimization problem consists in finding a vector

a:(Pl,Pz,P3, P4.ﬁl,¢2,¢3,¢4),

for tumor tissue that minimizes the quadratic functional

[T, (x) = T dx (1.1)

for healthy tissuc with the constraints
Tq (X)=sT,. (1.2

Actually, however, treatment by hyperthermia is not a stationary process. The damage and destruction of
living tissuce depend not only on the magnitude of the temperature but also on the duration of its action. Therefore,
if the time of the action of a high temperature is rather small, the tissuc 1s hardly damaged. Conversely, cven a
moderately high but long-lasting temperature can lead to the damage and destruction of healthy tissue.

In this connection, below we consider a nonstationary problem for the nonlinear biothermal equation. We
introduce a damage function that is determined at cach point of the tissuc with allowance for the temperature
history. This function is normalized so that it is equal to zero for healthy tissue and to unity for damaged tissuce.

The optimization problem involves maximization of the mortality function of the tumor cells. In this casc
the value of the destruction function in healthy tissue must be small.
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2. Direct Problem. Let Q C R", n =2, 3 be a region filled with tissue, with tumor occupying the region
Q, C Q and a healthy tissue the region Q \Q; (Fig. 1). We denote the boundaries of the Q and Q, regions by §
and " and assume that the latter quantities are continuous according to Lipschits. Let §; C § be the boundary
between the tissue and the environment and S; = S\S, the boundary between the region considered and the tissue
located outside this region.

The temperature field T in the healthy tissuc is described by the classical biothermal equation (5, 61

IT_ 5 9 0T , - @.1)
a— = 2 5% (k le») -W(T-T)+Q in Qx(0,N).

The right-hand side of Eq. (2.1) determines the amount of heat passing through the tissuc. The second
term of Eq. (2.1) represents heat transfer due to blood circulation. We will consider boundary conditions of the
following form:

T =T, over S, x (0, V), (2.2)

k %Z: =p(T, =Ty over 5; ~ (0, M), (2.3)

We assumc that the following initial temperature distribution is given:
T(x,0)=Tyix), x€EQ. (2.4)

In particular, it can be assumed that Ty =T, =T, = (.
Let us assume that

T, = const, (2.5)

{a, fc} C L, (), (2.6)

a(x) =z b, k(x)=zb, almost everywhere in Q, (2.7
BELL(S), B(s)= by almost everywhere over S, (2.8)
by =const >0 (1= 1—‘—3) . 29

Here and below we use cornventional notation for the functional spaces |7, 8. Let W= W(x, T) and the following
conditions be satisfied:

We L, (QC (R), (2.10)
V(L) EQxXx R, 0= W(x a) sbh, (2.1
V{x,a) EQXR, %—Z—(x,a)zo, (2.12)

where by = const > 0. If (x, t) - ¢(x, 1} is a function defined in Gy, then we assume that p(1) = <x = ¢(x, {)> and
consider ¢ a function (or distribution) of ¢, taking values in the space of functions (or distributions) of x.
Let T be a continuation of 7 in G, and satisfy the conditions
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TEL(0.1): H (). (2.13)

T, 4 @), @19

7‘|62=T1A (2.15)
In particular, if Ty (s, 1) = C = const on G, then we can let
7"(,(, Nn=0Cv (el .

We assume that

QE L, (0, N); X7y, (2.16)
Ty € Ly (82), (2.17)
T, €L, (0. My H Vs (2.18)

Specifically, we can assume that Vox e Ty = C. The function 7= T + Ty + T will be called a generalized
solution of problem (2.1)-(2.4) if T is a solution for the following problem:

?A"e Ly ((0, T) s X) N Ly, (0, Ty 5 Ly (), (2.19)

OT E L,((0,T); X) (2.20)

~

(a%?;(t), h) + (L(t),Y\‘(r ), h) = (Q (1), h) — (a%;(r),h) _

n
~f2/‘———( :‘—'fl—dr—fﬁ(r(z +T,-Ty)hds, YyhE X, (2.2
Q =1

?(’0) =Ty~ T (0) — T, . (2.22)

We can show that under condition (2.5 -(2.15) the operator is strictly monotonic. Using the results of [6,
71, we will prove the following theorem.
Theorem 2.1. Let conditions (2.5)-(2.15) and (2.16)-(2.18) be satisfied. Then, there exists a unigue

solution of problem (2.19)-(2.22), where the function (Q; Ta) -» T, which determines the solution, is a continuous
transform of

G =Ly (0. M) X ) % Ly (0, M H™H (s

10

du

V= {u| u€ L, ((0,T); H' Q) ; 5t €L (0,7 (H' @)")

3. Problem of Optimization. Let us consider the function of the heat source power Q and the cooling-mediurm
temperature 7 as controls. The set of controls will be determined in the form
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={a|q=(Q,7‘z)€G}~

From Theorem 2.1 it follows that for each ¢ € U there exists a unique generalized solution T, of problem

(2.1)-(2.4), where the function ¢ —» T, is a continuous transform of U to V. For each ¢ € U we determine the
damage function of the tissuec at the point x € Q

N
D (g, x) = [ (T, (x. ), x) Ty (x, 0) dt.
0

Here g is the influence function, which depends on temperature T and x € Q. In our case g(Ty(x, 1), x)T4(x, 1) is
the degree of tissue damage at a poml (x, 1) € G). The function g is determined from an cxperiment and is equal
to zero for T < C while for T > C it increases with an increase in T, C =const > 0. For undamaged living tissue,
®(g, x) =0 and the function g is normalized so that the cquality ®(g, x) = 0 indicates the tissue damage in the
vicinity of point x. We consider that:

gEC(RxQY, (3.
bsz g, x) 20, V¥ (a,x\) ERXQ, (3.2)
bs = const > 0. (3.3)

We assume that the region of the tumor € is divided into n; small open areas w; such that

wNw =@ (j=Tn:i=z), Uz =0. 34
i=1
For the function q € U we determine the extent of damage in w;
N
D, (q) = (mesw) x [ [ g(Ty(x, 1), x) Ty (x, 1) dx dt (3.5)
w; 0

]
and the objective functional

ny

W)= S (@ (q) - 1)’

=1

(3.6)

It is obvious that minimization of functional dg is equivalent to maximization of tumor damage. Similarly, we divide
the region of healthy tissue Q\Q, into n; small open arcas y; such that

XNy, =@ j=1lny02)),

n;
Ux, =Q\Q. (3.7)
I:
The damage extent in x; is:
N
W (q) = (mesy ) x [ [ g(T,(x 1), %) T,(x 1) dxdt. (3:8)
X 0

Let us determine the set of admissible controls
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Ua5={qlq=(Q-Tz)EU»

3 oT,
Fel e+ I ‘a% | Lo = 1Tl 6y + I T I LGy = €2
W) =<1{, i=1,ny, c;=const>0, i=1,2; [ =const>0, i=l,n2}. (3.9)

The constants /; are constraints on the damage of healthy tissue, /; < |. The problem of optimization consists in
finding gg such that

4 € Ugs, Wy (gg) = inf Wy (q). (3.10)
q€Us

Theorem 3.1. Ler us assume that the conditions of Theorem 2.1 and Eqs. (3.3)-(3.5) are valid. Let Wy be
an objective functional and U,y be a nonempty set defined by relations (3.4)-(3.9). Then a solution of problem
(3.10) exists.

Proof. Applying Theorem 2, we verify that W, are continuous on U. Next, using gencral theorems on
compactness [8], we prove that U,y is compact in U. Theorem 3.1 follows from the Weierstrass theorem.

This work was carried out with the financial support of the Fund for Fundamecntal Research of the Republic
of Belarus (grant No. B3-222).

NOTATION

Ty, solution of the biothermal equation for the vector g; Ty, temperature required for therapeutic effect
(43°C), Ty, maximum temperature allowable for healthy tissue (41°C); 1, time; x = (xy, xp, ..., X,), point of the
region Q; a = a\p, where q; is the specific heat, p is the density; &, specific thermal conductivity; w, value of blood
perfusion; T,, temperature of arterial blood; Q, power of a heat source of any physical nature providing tissue
heating; N, duration of treatment; 37/3dv, derivative in the direction of the unit normal v to §,; T, temperature
of the cooling medium; B, heat transfer coefficient; E‘, normal (physiological) temperature of healthy tissue; Y,
Y* are the Banach space and a space conjugate with it; G, = Qx(0, N), Gy = S%(0, N),

X = {ul u € HY(Q), ulg = 0}; L={Lw, r€ [0, N} is a sct of operators mapping the space X into X* in the
following manner:

n —~ —
(L@, hy={ kﬂ‘— a—h+ Wu+TO+T)w+T{h| de+ [ Buhds,
a P ax; dx; ¢ §
{u, h} CX.
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